Search results for "Conjunction and disjunction"
showing 5 items of 5 documents
Compound conditionals as random quantities and Boolean algebras
2022
Conditionals play a key role in different areas of logic and probabilistic reasoning, and they have been studied and formalised from different angles. In this paper we focus on the de Finetti's notion of conditional as a three-valued object, with betting-based semantics, and its related approach as random quantity as mainly developed by two of the authors. Compound conditionals have been studied in the literature, but not in full generality. In this paper we provide a natural procedure to explicitly attach conditional random quantities to arbitrary compound conditionals that also allows us to compute their previsions. By studying the properties of these random quantities, we show that, in f…
On conditional probabilities and their canonical extensions to Boolean algebras of compound conditionals
2023
In this paper we investigate canonical extensions of conditional probabilities to Boolean algebras of conditionals. Before entering into the probabilistic setting, we first prove that the lattice order relation of every Boolean algebra of conditionals can be characterized in terms of the well-known order relation given by Goodman and Nguyen. Then, as an interesting methodological tool, we show that canonical extensions behave well with respect to conditional subalgebras. As a consequence, we prove that a canonical extension and its original conditional probability agree on basic conditionals. Moreover, we verify that the probability of conjunctions and disjunctions of conditionals in a rece…
Compound conditionals, Fr\'echet-Hoeffding bounds, and Frank t-norms
2021
Abstract In this paper we consider compound conditionals, Frechet-Hoeffding bounds and the probabilistic interpretation of Frank t-norms. By studying the solvability of suitable linear systems, we show under logical independence the sharpness of the Frechet-Hoeffding bounds for the prevision of conjunctions and disjunctions of n conditional events. In addition, we illustrate some details in the case of three conditional events. We study the set of all coherent prevision assessments on a family containing n conditional events and their conjunction, by verifying that it is convex. We discuss the case where the prevision of conjunctions is assessed by Lukasiewicz t-norms and we give explicit s…
Algebraic aspects and coherence conditions for conjoined and disjoined conditionals
2019
We deepen the study of conjoined and disjoined conditional events in the setting of coherence. These objects, differently from other approaches, are defined in the framework of conditional random quantities. We show that some well known properties, valid in the case of unconditional events, still hold in our approach to logical operations among conditional events. In particular we prove a decomposition formula and a related additive property. Then, we introduce the set of conditional constituents generated by $n$ conditional events and we show that they satisfy the basic properties valid in the case of unconditional events. We obtain a generalized inclusion-exclusion formula and we prove a …
Canonical Extensions of Conditional Probabilities and Compound Conditionals
2022
In this paper we show that the probability of conjunctions and disjunctions of conditionals in a recently introduced framework of Boolean algebras of conditionals are in full agreement with the corresponding operations of conditionals as defined in the approach developed by two of the authors to conditionals as three-valued objects, with betting-based semantics, and specified as suitable random quantities. We do this by first proving that the canonical extension of a full conditional probability on a finite algebra of events to the corresponding algebra of conditionals is compatible with taking subalgebras of events.